Riparian Tree Response to Variability in Climate and Altered Streamflow along the Dolores River, Colorado

Adam P. Coble November 30, 2010

River Damming in the Western U.S.

An Example of Streamflow Alteration

Merritt and Cooper, 2000

Dam-Induced Channel Adjustments

Impacts of River Regulation on Riparian Forests

Reduced forest area

Reduced tree abundance

Loss of seedling habitat

Decline in seedling **establishment**

Reduced tree growth

Increased seedling survivorship
Increased forest density

Primary Cause: Reduced High Spring Flows

Dolores River

(1985 - 2008)

McPhee Dam constructed in 1984

Research Questions 1 and 2

- Does river regulation affect riparian tree establishment along the Dolores River?
- What streamflow conditions facilitate riparian tree establishment?

Controls over Riparian Tree Growth

- Growth +/- associated with streamflow
- Growth response to climate and streamflow can change due to river regulation (Reily and Johnson, 1982)
 - Unregulated river: **streamflow**
 - Regulated river: temperature and evapotranspiration
- Growth response to climate and streamflow dependent on geomorphic characteristics
 - Wide, alluvial valleys: **streamflow**
 - Bedrock constrained reaches: temperature

Research Question 3

• How does tree growth response to streamflow and climate differ among regulated and unregulated reaches?

Native Riparian Tree Species

Populus angustifolia (narrow-leaf cottonwood)

Acer negundo (box-elder)

Delineation of Segments

- 6 Reaches defined by Dolores River Dialogue
- Divided each reach into 2, 3, or 5 segments
- 1 study site per segment

Tree Sampling

- Assigned trees to 5.0 cm dbh size class
- 3 trees per size class per topographic position per segment

Tree Age Estimation and Tree Growth Measurement

• Estimated tree age (39.6% of trees) using template method

• Measured ring width for mature trees (established prior to 1984) using WinDEDNRO (Regent Instruments Inc., Quebec)

ASSESSED TO THE THREE CONTRACTOR OF THE PARTY OF THE PART	Representation Processes	
BREE BREENING GO A FARE		The state of the s
	m w	S - X - S - X - X - X - X
### # # # ### # # #### # # ##### # # ####		
		The state of the s

Number of Trees Used in Analysis

Analysis	narrow-leaf	broad-leaf	box-elder
Establishment	224	204	90
Growth	136	67	70

Data Analysis

20 Environmental Variables

Mean Temperature
Total Precipitation
Maximum Streamflow
Minimum Streamflow
Mean Streamflow
Palmer Drought Severity Index

Winter (Oct. – Mar.) Spring (Apr. – Jun.) Summer (Jul. – Sept.)

Previous Yr. Maximum Flow Subsequent Yr. Maximum Flow

- 3 Climate Stations
- 5 Gauge Stations

Streamflow Alteration Pre- and Post-dam

Prior to dam construction (1961-1984)

After dam construction (1985-2008)

Research Questions

- Does river regulation affect riparian tree establishment along the Dolores River?
- What flow and/or climate events facilitate establishment of native riparian trees?
- How does tree growth response streamflow and climate differ among regulated and unregulated reaches?

Narrow-leaf cottonwood Establishment

Establishment Models:

Upper Dolores

Winter Mean Temp (+)

$$ROC = 0.729$$

 $r^2 = 0.126$

$$p = 0.0039$$

Reaches 1 and 3

Winter Mean Temp (+)
Spring Precipitation (-)

$$ROC = 0.889$$

$$r^2 = 0.412$$

Broad-leaf Cottonwood Establishment

Establishment Model:

Reach 6

Summer Min. Flow(+)

ROC = 0.755

 $r^2 = 0.158$

p = 0.0029

Box-elder Establishment

Research Questions

- Does river regulation affect the number of recruitment events?
- What flow and/or climate events facilitate establishment of native riparian trees?
- How does tree growth response to variation in streamflow and climate differ among regulated and unregulated reaches?

Relationships between Cottonwood Establishment and Spring Maximum Flow

- Spring maximum flow explained little variation in cottonwood establishment
- Further substantiated by establishment models and large number of establishment events during the post-dam period (1985-2008)

Box-elder Establishment

- Observed a few positive significant relationships between box-elder establishment and spring maximum flow (Upper Dolores & Reaches 4 through 6
- Logistic regression models

```
Streamflow variables:

summer mean flow (+)

spring min. flow (+)

spring max. flow (+)

summer min. flow (+)

summer min. flow (+)

summer min. flow (+)
```

- High streamflow facilitated box-elder establishment
- High temperatures negatively impacted establishment
- Streamflow: stronger controls over box-elder establishment compared to cottonwood

Box-elder established at higher topographic elevations compared to cottonwood

Cottonwood: channel or ephemeral channels

Box-elder: intermediate zones between channel and 1st bench

Streamflow: stronger control over box-elder growth compared to cottonwood

Correlations between growth and mean flow

			Narrow-leaf	Box-elder
Reach	Regulation Status	Mean Flow	\mathbb{R}^2	R ²
Reach 3	Pre-dam	Winter Spring Summer	0.423* 0.274* 0.214	0.112 0.441* 0.438*
	Post-dam	Winter Spring Summer	0.019 0.212 0.407*	0.143 0.585** 0.470*

^{*} p-value < 0.05

Streamflow: stronger control over box-elder growth compared to cottonwood

Correlations between growth and mean flow

		В	Box-elder	
Reach	Regulation Status	Mean Flow	\mathbb{R}^2	\mathbb{R}^2
Reach 4	Pre-dam	Winter Spring Summer	0.119 0.232 0.275*	0.032 0.452* 0.358*
	Post-dam	Winter Spring Summer	0.087 0.145 0.205	0.441* 0.323* 0.409*

^{*} p-value < 0.05

Mature box-elder trees grew at higher topographic elevations compared to cottonwood

Cottonwood

0.76 - 1.22 meters above active channel

Box-elder

1.2 - 2.4 meters above active channel

Research Questions

- Does river regulation affect the number of recruitment events?
- What flow and/or climate events facilitate establishment of native riparian trees?
- How does tree growth response to streamflow and climate differ among regulated and unregulated reaches?

Narrow-leaf cottonwood growth: shift in seasonal response to streamflow

River Rea	- K082	Tabeguache Preserve	Seaso
Dolores Rea	R4S3 R4S2		Winter Spring Sumn
	R4S1 7 8 R3S2 7 8 R3S1 7 9	RS ANN	Winte Spring Sumn
Rea	ch 3 R1S2 R1S1 McPhee Dar	→	Winte Spring Sumn
	1	Upper Dolores Sites	Winte
	0 3 6 12 18 24 Filometer	.s	USGS Guage Stations Study Sites Sumn

Season	Growth vs. Mean Flow - R ²
Winter	0.055
Spring	0.274*
Summer	0.125
Winter	0.003
Spring	0.072
Summer	0.323*
Winter	0.423*
Spring	0.274*
Summer	0.214
Winter	0.019
Spring	0.212
Summer	0.407*

^{*} p-value < 0.05

Narrow-leaf cottonwood growth: shift in seasonal response to streamflow

Pre-dam (1961-1984)

Spring streamflow → Growth

Post-dam (1985-2008)

Summer streamflow → Growth

Shift in Growth Response at Reach 4 for two species

Species

Box-elder

Broad-leaf cottonwood

Post-dam (1984–2008)

Winter PDSI $(r^2 = 0.414)$

Summer PDSI $(r^2 = 0.391)$ Summer MIN Flow

- Does river regulation affect riparian tree establishment along the Dolores River?
 - Observed frequent establishment events for all species under regulated streamflow
 - Our results suggest no apparent affect on the number of establishment events of broad-leaf cottonwood and box-elder

- What streamflow conditions facilitate riparian tree establishment?
 - Cottonwood: no positive association with spring maximum flow
 - High streamflow facilitated box-elder establishment in both spring and summer seasons

- How does tree growth response to streamflow and climate differ among regulated and unregulated reaches?
 - Shifts in growth response:

Narrow-leaf cottonwood: growth more sensitive to summer flows under dam regulated flows

- How does tree growth response to streamflow and climate differ among regulated and unregulated reaches?
 - At Reach 4, growth more sensitive to drought under dam regulated flows
 - Streamflow alteration increased sensitivity to regional drought.

Streamflow Recommendations for Cottonwood Establishment

- Cottonwood maintain seasonal variation in streamflow
 - High streamflow during the months of May June
 - Base flows in summer months at or above long-term average

Streamflow Recommendations for Cottonwood

- Extreme departure from seasonal variation in streamflow resulted in:
 - Loss of habitat for cottonwood

Merritt and

Decline in cottonwood establishment

Streamflow recommendations for box-elder

 Maintain above average streamflow during spring and summer seasons

(1985-2008)

Streamflow Recommendations for Native Riparian Tree Growth

- Sensitivity to PDSI increased due to river regulation
- Climate models predict more frequent drought (Seager et al., 2007)

Acknowledgements

School of Forestry

DOLORES RIVER DIALOGUE

Office of the Vice President for Research

My committee:

Dr. Thomas Kolb Dr. Margaret Moore Dr. Kristen Waring

Field and Lab Assistance

Rob Anderson

Jeff Kane
John Godbey
Elizabeth Camarata
Don Normandin and ERI
David Graf
Dolores Public Lands Office
Cara MacMillan

Landowners

Vicki Phelps
Mark Youngquist
Larry and Jim Suckla
The Nature Conservancy
Bureau of Land Management
U.S. Forest Service

Data Analysis

- Multiple logistic regressions were used to model riparian tree establishment (establishment vs. non-establishment)
- Establishment year: a year of large recruitment events where two or more trees established in a reach
- Prior to logistic regression analysis screened out variables using a univariate test
- Stepwise logistic regression used to select climate and flow variables
- Multivariate models of tree growth selected based on lowest AIC value

Tree Age Estimation: Comparison of Two Methods

1) Template method (Applequist, 1958)

Observed Age Predicted Age

2) Age-diameter at coring height model

River Damming and Diversion Increased Growth Sensitivity to Drought

P. angustifolia

(1961-2008)

River Damming and Diversion Increased Growth Sensitivity to Drought

P. angustifolia

(1961-2008)

^{*} p-value < 0.05

River Damming and Diversion Increased Growth Sensitivity to Drought

Populus deltoides

(1961-2008)

Dam-Induced Channel Adjustments

