On the Distribution of the Blank (B)

L.A. Currie and J.M. Conny -- NIST (March 2003)

- The blank as the fundamental limiting factor
- Relation to detection decisions and limits, and uncertainties of low-level measurements
- Environmental blanks: normal and *ab*-normal
- Case study of TOA filter-blanks for OC and EC Importance for remote carbonaceous aerosol: SUMMIT, GREENLAND air (0.3⁺ µg/m³) and snow (9⁺ µg/kg) [TC]

Detection -- The Concept

- Dual Questions:
 - Q1 How little can be detected (quantified)?
 - Q2 Has something been detected (how much)?
- Popular Responses:
 - **Intuitive** (sound experience, non-quantifiable)
 - Ad Hoc (rigid formula, dictum, vote, ...)
 - **Signal/Noise** (assuming white noise, Q2 only)
 - Avoidance (small signals not worth considering)
 - Hypothesis Testing (false positives and false negatives)

Detection Needs and Capabilities L_C : critical level, L_D : detection limit, L_R : requisite limit

Answer -- question 2

Detection Decision (Critical Value) (L_C ; $\alpha = 0.05$)

• **Defining relation** (IUPAC, 1995, 1998):

(1) $\Pr(L > L_C | L=0) \leq \alpha$

• Simplified relations (IUPAC, 1995, 1998)

(2a)
$$L_C = z_{1-\alpha} \sigma_o \rightarrow 1.645 \sigma_o$$

(2b) $L_C = t_{1-\alpha, v} s_o \rightarrow 2.132 s_o$ [4 df]
For paired measurements: $\sigma_o = \sigma_B \sqrt{2}$

B - Distributions

- S (materials, atmospheric particles: n-large)
- ¹⁴C (atmospheric particles: n-small)
- OC, EC (unused Lab and Field filter blanks)

- <u>S. ¹⁴C:</u> Currie, "Case studies of skewed .. distributions .. in low-level environmental research," *Fresenius J Anal Chem* 370 (2001) 705-718.
- OC, EC: Conny & Slater, "BC and OC in aerosol particles from crown fires in the Canadian boreal forest," *J Geophys Res* 107, D11 (2002) 10.1029/2001JD001528.

Sulfur Blank Distribution (W.R. Kelly, 1994)⁶ (n = 179; mean [rsd] = $0.27 \ \mu g \ [0.74]$)

<BUT: It depends on the weather!>

Modern Carbon (¹⁴C) Blank Distribution (Currie, 2000)⁵ (n = 13; mean [rsd] = 0.16 [0.06] μ g C)

- EC must be isolated for AMS measurement
- Combustion tube (AMS) blank controlled via 'thermal discriminator'
- Approximate normality via (B_i B_j) [paired observations]

OC Lab Filter Blank (mean, s=1.23, 0.23 µg/cm²) n=7

 L_{C} (paired) = $t_{6,0.05} s_{B} \sqrt{2} = 0.62 \ \mu g/cm^{2}$

OC Field Filter Blank (mean, s=1.53, 1.18 µg/cm²) n=28 <ASSUMPTION INVALIDITY: Not Normal!>

 $L_{C} (N,0.05) \approx 1.93 \ \mu g/cm^{2}$ $L_{C} (N,0.01) \approx 2.73 \ \mu g/cm^{2}$ [not paired] $L_{C} (LogN)/L_{C} (N) = 1.09$ $L_{C} (LogN)/L_{C} (N) = 1.56$

EC Field Filter Blank (mean, s=0.007, 0.051 µg/cm²) n=28 <ASSUMPTION INVALIDITY: Not Normal!>

 L_{C} (paired) = $t_{27,0.05} s_{B} \sqrt{2} = 0.12 \ \mu g/cm^{2}$

EC Field Filter Blank -- time series ASSUMPTION INVALIDITY: Not Stationary!>

Some Bottom Lines

- *Real* blanks, and df are expensive
 paired measurements vital when small df
- Empirical B-distributions having abnormal variance (meson BG) or abnormal shape (skew, kurtotic) may signal non-random (exogenous) artifacts
- Bi(+) variate isotopic blanks:
 - may carry blank-source information
 - yield non-linear correction surfaces
- Valid detection rests totally on Distrib(B_i B_j)

Virtual Reality

(reporting of low-level data) L.A. Currie, October 2002

◆ EPA/NBS intercomparisons - 1970's (info-loss and bias)

- ♦ Virtual presence (storage of low-level radioactive waste)
- ♦ Virtual absence (emissions from ordnance use & disposal)

290 X-RAY FLUORESCENCE ANALYSIS OF ENVIRONMENTAL SAMPLES

Hg (µg/g) in SRM 1577	7 (bovine liver)
0.055 ± 0.014 0.070 ± 0.015 ≤ 0.2 0.043 ± 0.024	$\begin{array}{l} 0.016 \pm 0.002 \\ 0.012 \pm 0.005 \\ 0.021 \\ 0.09 \\ 0.006 \pm 0.0006 \end{array}$
SRM 1633 (coal	fly ash)
As $(\mu g/g, lab 11)$: <100 S (%, lab 9): <5.5,	< 100, <100, <100, <100, <100 < 6.7, < 6.0, < 5.0, < 6.0

Table 25.1 Reporting Practices (Intercomparison Results)

*L. Currie, Ch. 25 in T. Dzubay, Ed., X-ray fluorescence analysis of environmental samples (1977)

Virtual Radioactivity (case study - 1)

"Nuclear waste storage sites filling up with virtual radioactivity"

Issue-1:

Inadequate measurement capability (LSC, ¹⁴C)

Issue-2:

Inadequate low-level data reporting (info. loss and bias)

(e.g., $500\pm800 \text{ kBq} \rightarrow <1300 \text{ kBq} \rightarrow 1300 \text{ kBq})$

Workshop on Standards ... for Low-level and Environmental Radionuclide Mass Spectrometry and Atom Counting (NIST, April 1999).

COUNTER - EXAMPLE:

Emissions Database filled with zeroes!

•Small scale field studies of emissions from ordnance disposal resulted in over 100,000 data, of which 80% were "ND, NS, or NA."

•NDs were set to zero, "to facilitate validation and statistical analysis ..."

•"Validated database" to be used with sophisticated model to forecast emissions from large-scale open burning and detonation

DOD Workshop on Research Needs for Air Quality Compliance (June 1999)