Insights from Thermal Analysis of Individual Organic Compounds, Mixtures, Black Carbon Surrogates, Airborne PM and Extracts

Lara Gundel, R.L. Dod, T.W. Kirchstetter and Y. Pang
E.O. Lawrence Berkeley National Laboratory
University of California, Berkeley, CA

J. Jimenez and C.S. Claiborn
Dept of Civil and Environmental Engineering
Washington State University, Pullman, WA

OCEC Workshop
March 3-5, 2003
Durango, Colorado
Objectives

1. Compare thermograms of organic compounds, ambient, source and ‘surrogate’ particulate matter.

2. Shed light on the chemical characteristics of the temperature-defined carbon fractions in relation to what is known from detailed speciation efforts for organic compounds in source and ambient PM.
Approach

- Dip quartz filters into solutions of representative compounds and slurries of compounds and fine activated carbon
- Compare NIOSH 5040 and combustion EGA for stds, AC and stds+AC
- Compare to combustion EGA for more stds, as well as source and ambient PM
- Compare to combustion EGA for extracted PM and extracts
Organic Compounds: NIOSH & Combustion EGA

- Tetracosane ($\text{C}_{24}\text{H}_{50}$ alkane)
- Glutaric acid
- Methylcellulose
- Cholesterol
- Potassium hydrogen phthalate (KHP), often used for calibration of OCEC
Surrogate PM

- ‘Surrogate PM’: mixture of fine activated carbon (AC) particles and one or more known compounds
- Coated onto filters from slurries
- Dried at < 50 C
Combustion Constant Heating - Novakov

Temperature programmed combustion in pure O_2

- Concurrent light transmission (1980’s)
- Tom Kirchstetter now enabling multi-wavelength TOT

Standards + AC (‘back drawers) and new preps

- No light transmission in very recent preps
- Standards and fine AC coated on filters from solutions & slurries
Modified NIOSH 5040 TOT

- OC1 (250 °C, 60 s) Helium
- OC2 (500 °C, 60 s)
- OC3 (630 °C, 60 s)
- OC4 (870 °C, 90 s)
- OP from light transmission decrease
- OC = Σ of the first 5 fractions
- Heat off 30 s, then 2% O₂ in He
- EC = difference between the carbon evolved in the presence of O₂ and the Pyr
- 500 °C (10 s), 600 °C (20 s), 670 °C (20 s), 740 °C (20 s), 810 °C (20 s), 860 °C (20 s), and 920 °C (120 s)
- TC = OC + EC
Results

Tetracosane [High] + AC (NIOSH)

Fraction

microg cm\(^{-2}\)

0 50 100 150 200 250

OC EC OC1 OC2 OC3 OC4 PyC EC

- AC
- tetracosane
- tetracosane + AC
Results

Glutaric Acid [High] + AC (NIOSH)
Results

Glutaric Acid (High) +AC

![Graph showing dCO₂/dT versus Temperature for Glutaric Acid (High) +AC]

- Glutaric + AC
- Glutaric
- AC

Environmental Energy Technologies
Results

KHP [High] +AC (NIOSH)

![Graph showing microg m⁻² for different fractions: TC, OC, EC, OC1, OC2, OC3, OC4, PyC, EC. The graph compares AC, KHP, and KHP+AC with overlaying lines.]

Environmental Energy Technologies
Results

KHP + AC

![Graph showing the rate of change of CO₂ concentration with respect to temperature for KHP and AC. The graph includes multiple peaks at different temperatures, indicating different reaction rates and behaviors. The x-axis represents temperature in Kelvin, and the y-axis represents the rate of change of CO₂ concentration (dCO₂/dT).]
Results - Individual Compounds

- *OC1*: Volatility and MW, rather than class or functional group, controlled the evolution of OC \(\leq 250\) C.
- *OC1*: The higher the MW and greater the O content, the more likely the compound was seen in more than one fraction.
- *OP*: formation of OP was more likely for polyfunctional compounds with at least one aromatic ring.
- *OP*: Some complex oxygenated molecules with saturated rings also pyrolyzed readily.
Results: Surrogate PM

- Reconstruct any profile with AC + a few compounds
- Different ratios of OC and EC influence fractions
- Aromaticity and oxygen) influence fractions
- Surrogate PM may still have uses.
Results: Indoor PM

Seattle OC Indoor PM +/- SVOC

![Graph showing the comparison of OC concentrations across different fractions (OC1, OC2, OC3, OC4, and PyC) with and without SVOC. The graph plots microg C m\(^{-3}\) against Fraction.]
Acknowledgements

- US EPA - Northwest Center for the Study of Particulate Matter and Health
- Atmospheric Chemistry Program, US Dept. of Energy